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Relevance of memory in minority games
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By considering diffusion on De Bruijn graphs, we study in detail the dynamics of the histories in the
minority game, a model of competition between adaptative agents. Such graphs describe the structure of the
temporal evolution oM bit strings, each node standing for a given string, i.e., a history in the minority game.
We show that the frequency of visit of each history is not given by 1if2 the limit of largeM when the
transition probabilities are biased. Consequently, all quantities of the model do significantly depend on whether
the histories are real or uniformly and randomly sampled. We expose a self-consistent theory of the case of real
histories, which turns out to be in very good agreement with numerical simulations.

PACS numbgs): 02.50.Le, 05.40-a, 64.60.Ak, 89.90:n

[. INTRODUCTION equation between the asymmetry of the game and the diffu-
sion bias, which we can solve. The results are in excellent
The minority gameMG) [1,2] has been designed as the agreement with numerical simulations and show a systematic
most drastic possible simplification of Arthur’'s El Farol's deviation from the random history MG. Hence, our conclu-
bar problem3]. It is believed to capture some essential andsion is that, even though the random history MG is qualita-
general features of the competition between adaptativéively similar to the original MG, memory is actually not
agents, which is found, for instance, in financial markets. Inrrelevant, and one can quantify the difference between the
this model, agents have to make at each time step one of two cases.
decisions; they share a common piece of information
e{0, ... P—1} that encodes the state of the world, use it to
make their choice, and those who happen to be in the minor- Il. DE BRUIJN GRAPHS
ity are rewarded. In its original formulation, the piece of
information is the binary encoding of the last winning

. . — M - .
choices; henc®=2". Hence, the dynamics qf is coupled ordered element(t—M), . . . b(t—1)} whereb s a letter

to the dynamics of agents. . / :
Cavagnd4] claimed that all quantities of the system “are _belongmg to the alphabg0, 1. u(t+1) is obtained by add-

completely independent from the memory of the agents.”mg.b(t) to the right ofu(t) and grasmg‘p(t— M).' Thus, for
This means that replacing the dynamics @finduced by i\glven,u.(t), ther”e are two pQSS|bIﬁ(t+1), which we caII'_
agents by a random histogy drawn at random at each time next neighbors.” This updatlng rule defines the De Bruijn
step, one finds the same results. While this statement hagsraph[Q] of orderM (see .F'g' 1 for an _exampl.e -
turned out to be wrong for many extensions of the MG Let G be thePXP adjacency matrix Of. the De _Bruun
[5-8], it has been helpful as a first approximation for thegraph of qrdeﬂ\/l. If we adop.t the convention that its elle-
analytical understanding of the standard MG: an exact solur—nemS are indiced by the decimal value of the binary strings,
tion for random histories has been found in the “thermody-that is,u=0,....P—1,

namic” limit [7,8]. Interestingly, this solution shows that alll
quantities depend on the frequencigs‘} of the visit of
histories. The random history case is recovereptiE 1/P,
but in the real dynamics of the MG the distributigrt is

determined by the behavior of ageriisdeed modifying the  \yhereAdB stands for the remainder of the divisionBby

behavior of agents may have strong effectspnas shown A and s, | is the Kronecker symbol. The adjacency matrix for
in Refs.[7,8]). It turns out that the frequencigg* are not =3 g

uniform for all parameters of the MG.

In this paper we study quantitatively this problem. The
first step is to characterize the properties of the dynamics of
real histories, which amounts to studying randomly biased
diffusion on De Bruijn graphs. Depending on the asymmetry
of the bias, we quantify the deviatiofp” = p*—1/P from
the uniform distribution. Then we move to the MG and quan-
tify the bias which agents induce on the dynamicg.ah the
asymmetric phase. Using a simple parametrizationp®f
which is inferred from numerical data, we generalize the
calculations of Refs[7,8]. This leads to a self-consistent FIG. 1. De Bruijn graph of order 3.

Let us begin with the definition of some elementary con-
cepts. A binary sequence(t) of length M consists ofM

GLv= 012,%pP], v O[2,u%6P] + 105 (1)
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where the¢ are drawn independently from the probability
distribution function (PDF) P(¢&)=1/25(¢é—1)+1/25(¢
+1) and the 1)” comes from the normalization of the
perturbed probabilities. We are looking for the stationary
transition probabilities, i.e., W, such that W,

(2 =lim,_..(W,)X. It exists sincaV, is a bounded operator. Its
formal series expansion ine is denoted by W7
=3,-0€"W} whereW; is a matrix all of whose coefficients
are equal to B (see above The relationshipV, =W, W,
provides the recurrence

o O O r O O O Bk
o O O r O O O Bk
o O »r O O O +— O
o O »r O O O +— O
O »r O O O+ O O
O B O O O+ O O
R O O O Fr O O O
o O O +~ O

IIl. UNBIASED DIFFUSION Wi =W Wo+ W, W;. (6)

The unbiased diffusion is defined as follows: a parUcIeSInceW WZ=0, we iterate this equatiom—1 times by

moves on the directed De Bruijn gra@) and at each time
stept, it jumps with equal probability to one of the next g;ﬂasgzlr;?:/;nv;lth WiWo+Wic_,W, on the right-hand side

neighbors of the vertex it stands on at this time. Thus th
transition probability matrix i&Vy= G/2. In the long run, the
fraction of time spent on vertex is given by[ (Wg)“ 1o, - It Wi =W W, V=W5[ W, VI, (7)
can be seefisee Appendix Athat

kg whereV=3M"1(Wg)¢. At this point, it is useful to remark

1 that multiplyi tri the left by i ivalent t
koot plying a matrix on the le 5 is equivalent to
[(Wo)lu. ok nzo O2ku%P] .1 ®) averaging its columns:
In particular, W'V'Jrk)ﬂv,,:l/P for all k=0 that is, all strings P-1 1P
w are visited with the same frequenpy = 1/P. (WoA), = > (Wg) e ~5 E
v a0 e a=0o

In order to have a intuitive feeling of those graphs, we

write them forM =3: = (average of thevth column ofA; (8)

thus the matricedV, consist of averages of columns of
(W,V)K. Therefore, W) .., is the kth order correction to
the frequency of vertex, which will be calledp(,, in the
following. Note that(p,,).=0 for allk=1. The square root
of the second moment gf(,, averaged over the disorder
gives an indication of the typical value pf;, . In Appendix

B we obtain the approximation

N
O Fr OFr O Fr O R
O Fr OFr OFr O R
O Fr OFr OFr O R
O L OFr OFr O R
B O R O Fr O Fr O
P O R O Fr O Fr O
P O R, O Fr O Fr O
O Pk O Fr O kK

(1—-1/P)K
<||P(k)||2>§~T- ©)

which is exact for the first order perturbation. Therefpfg
is of the same order as the unperturlpgg]; thus it cannot be
neglected. Figure 2 shows that the behavior predicted by Eq.
(9) is indeed correct for largP.

Finally, one can estimate the second momeni’ofif one
supposes that the perturbations at different orders are inde-
pendent, one obtains

N = = T = T W S S S
N = = = T o T = T =
N = = T = T W SRS S
N = = = = T = T =
N = = T o T T T =
L = T = T =Y S S BN
e T e e =

P-1
@ E (P 1) (p")?]
IV. RANDOMLY BIASED DIFFUSION

1 1
The perturbations are introduced by adding a term to the 2; m— 11
transition probabilities matri¥V.=W,+ eW; wheree quan- ( e
tifies the asymmetry an@/; contains the disordet: 1 &

— . (10
(W) = (=1)"6,(Wo) 1, » 5 P2 1-¢€?
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FIG. 2. Squared norms gf, for k=0, ... ,4(circles, squares,

FIG. 3. Comparison between the fluctuations of the MG with
uniformly sampledsquaresand real(circles histories. In the sym-
metric phase, these are equal whereas they differ significantly in the
asymmetric phase. Dashed and solid lines are corresponding theo-
retical predictions; they overlap in the symmetric phalse<8, S
V. APPLICATION TO THE MG =2, 30(P iterations, average over 200 samples

Let us first define the ganieThe MG consists oN agents
trying to be at each time step in the minority. Each agent hag:0 for someu. The dynamics of the history is biased on all
S strategies or lookup tables ¢, s=1, ... S, and dynami- such histories and consequently all macroscopic quantities
cally assigns a score to eachyof them. At each time tstibe are significantly different: botkr?®/N andH/N are lower for
system’s historyu(t) is made available to all agents; the real histories than for uniformly sampled histories. This can
latter use their best stratefg(t) to make the decision be understood by the facts thaf/N andH are increasing
al's ()= +1 or —1 and a market maker sums up all deci- Lunctions m:ja andhthatﬁthe biases gn th(fe rI]De Bruijnhgraph og)
S sy N p istories reduce the effective number of histories that can be
sions into the.aggregétfe quan.tAjt) E.izlai'si(t)(t)' defined as 2'°%¢: in other words, the effective of the MG

Macroscopic quantltle_s_ of interest include the tempora\Nith real histories is smaller than that of the MG with uni-
averages of thé\(t) conditional tou(t)=pu, for all u, de- ¢ histories. This explanation is indeed confirmed by Fig.
noted 'by(A'“>. The MG undergoes a second order phases. this shows the fraction of frozen agehw which is a
transmon_ with .symmetry breaking as th control paramete'aecreasing function of in the asymmetric phase. As ex-
a=P/N is varied[10,11]: the system is in the symmetric o 1o from the above argumens, of the MG with real
phase (A*)=0 for all u) if a<a. and itis in the asym- pigiories is larger than that of the MG with uniformly
met%he}sg forr>a.. One cgnvement order.parametegr IS sampled histories.
H=(A)": it is equal to zero in the symmetric phase, and The biase* on a particular history can be estimated for
grows monotonically withe in the asymmetric phasdl]  |argeN: in this limit A“ is a Gaussian variable with average
(see Fig. 4 One other relevant macroscopic quantity is the<Au> and variance (A*)2)—(A*)?, leading to
fluctuati0n502=<A2) which quantifty the performance of
the agent$8,10-13.

Before doing any analytic calculations, it is worth looking

e“=<sgr(A“)>:e{f1=erf( \/

diamonds, open triangles, and solid trianglésverage over 500
samples They decrease asPR/for large P. The solid lines are
exact theoretical predictions.

at Fig. 3 and 4 which clearly show that Cavagna’s assertion (AM)?
is right as long as the system is in the symmetric phase. 2[{((A*)2)—(AM)?]
Indeed, if{(A*)=0, the transition probabilities from to its
next neighbors are unbiased; thatés=0. Therefore in the Figure 6 confirms the validity of Eq11). The figure also
symmetric phase, whegA*)=0 for all «, the frequencies shows thak* are unevenly distributed and they are not equal
of visit are uniformp#=1/P. Accordingly, numerical simu- even if the system is deep in the asymmetric phase §.5
lations show that these quantities collapse on the same curvia this figure. Indeed, as a function qgf, (A*) is a random
As «a increases, the critical point is crossed, a#t)  variable with average 0 and varianke which is an increas-
ing function of . Since we studied the diffusion of per-
turbed graphs with only one parametemwe have to map all
1See Refs[11,7,8,12 for more details. e” onto a scalar quantity, so that we defiaeas the non-

°The one with the highest score.

3§=Eﬂp“R“ is the notation for the weighted average over the
histories. 4See[11]: they are agents that stop being adaptative.
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FIG. 4. Comparison between the available information of the
MG with uniformly sampled(squares and real(circles histories.

FIG. 5. Comparison between the fraction of frozen agents in the
MG with uniformly sampledsquaresand realcircles histories. In

Dashed and solid lines are corresponding theoretical prediction§!€ Symmetric phase, these are equal whereas they differ signifi-

(M=8, S=2, 30(P iterations, average over 200 samples

weighted averagef e* over the histories. For large, e can
be approximated by

a2
eA/ZH

12

f(
r
\/2(0'2— H)

Here bothH and o> can be computed analytically with the
method of Refs[7,12,8 (see Appendix € However, the
solution depends on the distributiprt. In order to make Eq.
(12) a self-consistent equation fax,, we need to param-
etrize the distribution op* by €, itself.

We could not findab initio the analytic form of the PDF
of {p*}, but Fig. 7 shows that

:=2deA e
S PNy

(A

__ "7 A -\ +1)7
P(N=F0+1)

13

is a very good approximation for the PDF pf= 7/P. The
parameten is easily connected witla;, :

1
2N /N2 T pP2A 2
()= ()= —PPAn’= (14
where we used Ed10). This gives\=(1—2¢2)/€2,. Note
that this approximation requires,< 1/1/2.

This turns Eq.(12) into an equation foré_th, and the
theory is self-consistent. Figure 8 reports the measuraad

its approximatiorgh. What clearly appears from this figure

is that e is far from being negligible, and tha_’gh is a quite
good approximation t@.

SThis is clearly an important assumption, but the diffusion on De
Bruijn graphs with ones* per site leads to a much greater com-

plexity. As appears in Figs. 3, 4, and 9, this assumption is not

unrealistic.

cantly in the asymmetric phasd(=8, S=2, 30(P iterations, av-
erage over 200 samples

We can also check the validity of E10) against the
self-consistent theory. Figure 9 shows that E4Q) is in
good agreement with numerical simulations as long as all

histories are visited. Moreover, the approximatEn for e
leads to qualitatively similar results, but underestimates

because:;,< € (see Fig. &

The self-consistent replica calculation for the minority
game of Refs[7,12,8 with the ansatzp = 7/P and r given
by the PDR13) is discussed in Appendix C. Figures 3 and 4
indicate that analytic predictions are well supported by nu-
merical simulations.

In the asymmetric phase, which is arguably the most rel-
evant and interesting in the M[8], all quantities of the MG
change significantly if one replaces real histories with ran-
dom uniform histories. A dependence on the frequengtes

Ein

FIG. 6. €f, of Eq. (11 vs real e (M=10,
100CP iterations.

N=121,
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FIG. 9. Inhomogeneity of the frequency of historiep? versus
FIG. 7. Distribution of the frequency of visit of the histories in o= P/N from numerical simulation&ircles, Eq. (10) with e from
the minority game. The solid line is the best fit for a PDF given by nymerical simulationgsquarey and Eq.(10) with Zh (solid line).
Eq. (13 (M=13, N=801, S=2, 40(P iterations. Inset: average number of visited histories veraugM =8, S=2,
300P iterations, average over 200 samples
does not necessarily imply the relevance of the detailed dy-
namics of the histories. If the historigs where drawn ran-  the MG, the dynamics of histories is not only relevant, but
domly from the *“correct” distributionp#, the results would  ¢rycial.
be the sameactually it suffices to know the pdf gf*). The
problem is that the distributiop” depends on the asymme-
try (A*), which in turn depends on the microscopic consti- ACKNOWLEDGMENTS
tution of all agents[11]. In other words,p* is a self-

consistently determined quantity and hence it is only knowr]etWe acknowledge fruitful discussions with Philippe Flajo-

and Paolo De Los Rios. This work has been partially

a posteriori supported by the Swiss National Science Foundation under
Grant No. 20-46918.98.
VI. CONCLUSION
We have shown that the dynamics of histories cannot be APPENDIX A

considered as irrelevant. Indeed, even for the canonical MG,
it is relevant and cannot be replaced by randomly drawn
histories. In addition, for many extensions and variations of

Let us prove by induction that

2k—1
‘ 1
08 . (WE) 0= 5 2 k] e (A1)
oM=7
o M=9 . . .. K
06 self—consistent It ;131 sufficient to calculate explicitly W), , from
0 [ T W - ,
ﬁﬁlgn.nonl:?nﬁ [a g ( 0 )M’D
OB"D )
P-1
k k—
FO4 [ . (WE)u0= 2, (Wo)y, (WG ™)
=
2kl
02 L ] = ngo {5[2k’1([2ﬂ%P])%P]+n,v
+ O 2k—1([2,4%P] + 1)%P] + n, v
k_
0 12t
0.1 :x 10 = ? HZO 5[2k,u%P]+rl,V! (AZ)

FIG. 8. € versusa=P/N (M=8, S=2, 30(P iterations, aver-

age over 200 samplesThe straight line is,, the theoretical pre-  since  A(B%P)%P=AB%P and  (Xu+2“1)%P
diction of the self-consistent theory. =[2ku%P]+25"1if P=2M andk=M—1.
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APPENDIX B [7,12,8 to p*= 7*/P drawn from the pdf given by Eq$13)
and(12) is straightforward; the free energy reads, in the ther-

In order to simplify the notation, we define S
modynamic limit,

2€-1
1+q 1
(X% p= nZO 0126+ 1,96P] +n,p ™~ O[26+1%P] +n+ 26, - F(B,Q.9,Rr)= < ﬂln[1+XT]> +T 1
(B1) TTX
This matrix is such that
af
+ 5 (RQ-rq)
(X v
1 it 2o Luo6P<p<[2°*1u%P]+ 2", _ 1<'”f1 dse,;(gszms)> ©
={ =1 if [2°T'u%P]+2°<p<2°TY( u+1)%P, -1 z
0 otherwise. where y=8(Q—q)/a and {=—Jalr B(R—r). Next, the
(B2)  B— limit is taken while keeping finitey and {. One ob-
tains
With this formalism, one can writgV/,V as
B 1+Q 1 1 ©
by 1o "2 (1 )M p
WiV),p = 2 (X (83) ~tx ~+x
Let us calculate the perturbation at order 1: one has to co
pute ||pe)||? in order to have an estimation of the typical
vaIue of a generig(y,: since the¢ are uncorrelated and 1-Q
(J)-(XC)M V(Xd),u 1/_2C+15Cd1 02:H+T’ (CS)
1 h M (XC)M 2 (1 1/P) whereQ and y take their saddle point values, given by the
(lpll? )g—T 2, Z - solution of
(B4) 2 L p
The next orders of perturbation are much harder to handle. QUO=1-\— " 1-—|erf 2 (CH
However, for largeP, one can approximate them by suppos- ¢
ing that 2 )
1| erf({/\2) 1
, L (1-1P) QH=~ % 1 -1, (CH
locolPre (1= 1Pl A= <_>
(B5) [1/7+x]
Consequently pf,y~(1—1/P)¥*(1/P)=1/P at leading or- 1 erf(Z12)
der. X = . (Co)
1 16
APPENDIX C T .

Since agents actually minimizel/N, one can consider Equations(C5) and (C6), together with Eq.(12), form a
this quantity as a Hamiltonian and find its ground state. Thislosed set of equations that has to be solved numerically.
is possible by methods of statistical physics such as the refNote that as in the random histories cagdyecomes infinite
lica trick [13,14). The generalization of the calculus of Refs. at the critical point, wherer,=erf(¢//2).
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