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Relevance of memory in minority games
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By considering diffusion on De Bruijn graphs, we study in detail the dynamics of the histories in the
minority game, a model of competition between adaptative agents. Such graphs describe the structure of the
temporal evolution ofM bit strings, each node standing for a given string, i.e., a history in the minority game.
We show that the frequency of visit of each history is not given by 1/2M in the limit of largeM when the
transition probabilities are biased. Consequently, all quantities of the model do significantly depend on whether
the histories are real or uniformly and randomly sampled. We expose a self-consistent theory of the case of real
histories, which turns out to be in very good agreement with numerical simulations.

PACS number~s!: 02.50.Le, 05.40.2a, 64.60.Ak, 89.90.1n
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I. INTRODUCTION

The minority game~MG! @1,2# has been designed as th
most drastic possible simplification of Arthur’s El Farol
bar problem@3#. It is believed to capture some essential a
general features of the competition between adapta
agents, which is found, for instance, in financial markets
this model, agents have to make at each time step one of
decisions; they share a common piece of informationm
P$0, . . . ,P21% that encodes the state of the world, use it
make their choice, and those who happen to be in the mi
ity are rewarded. In its original formulation, the piece
information is the binary encoding of theM last winning
choices; henceP52M. Hence, the dynamics ofm is coupled
to the dynamics of agents.

Cavagna@4# claimed that all quantities of the system ‘‘a
completely independent from the memory of the agent
This means that replacing the dynamics ofm induced by
agents by a random historym drawn at random at each tim
step, one finds the same results. While this statement
turned out to be wrong for many extensions of the M
@5–8#, it has been helpful as a first approximation for t
analytical understanding of the standard MG: an exact s
tion for random histories has been found in the ‘‘thermod
namic’’ limit @7,8#. Interestingly, this solution shows that a
quantities depend on the frequencies$rm% of the visit of
histories. The random history case is recovered ifrm51/P,
but in the real dynamics of the MG the distributionrm is
determined by the behavior of agents~indeed modifying the
behavior of agents may have strong effects onrm as shown
in Refs. @7,8#!. It turns out that the frequenciesrm are not
uniform for all parameters of the MG.

In this paper we study quantitatively this problem. T
first step is to characterize the properties of the dynamic
real histories, which amounts to studying randomly bias
diffusion on De Bruijn graphs. Depending on the asymme
of the bias, we quantify the deviationdrm5rm21/P from
the uniform distribution. Then we move to the MG and qua
tify the bias which agents induce on the dynamics ofm in the
asymmetric phase. Using a simple parametrization ofrm

which is inferred from numerical data, we generalize t
calculations of Refs.@7,8#. This leads to a self-consisten
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equation between the asymmetry of the game and the d
sion bias, which we can solve. The results are in excel
agreement with numerical simulations and show a system
deviation from the random history MG. Hence, our conc
sion is that, even though the random history MG is quali
tively similar to the original MG, memory is actually no
irrelevant, and one can quantify the difference between
two cases.

II. DE BRUIJN GRAPHS

Let us begin with the definition of some elementary co
cepts. A binary sequencem(t) of length M consists ofM
ordered elements$b(t2M ), . . . ,b(t21)% whereb is a letter
belonging to the alphabet$0,1%. m(t11) is obtained by add-
ing b(t) to the right ofm(t) and erasingb(t2M ). Thus, for
a givenm(t), there are two possiblem(t11), which we call
‘‘next neighbors.’’ This updating rule defines the De Brui
graph@9# of orderM ~see Fig. 1 for an example!.

Let G be theP3P adjacency matrix of the De Bruijn
graph of orderM. If we adopt the convention that its ele
ments are indiced by the decimal value of the binary strin
that is,m50, . . . ,P21,

Gm,n5d [2m%P],n1d [2m%P] 11,n , ~1!

whereA%B stands for the remainder of the division ofB by
A andd i , j is the Kronecker symbol. The adjacency matrix f
M53 is

FIG. 1. De Bruijn graph of order 3.
1862 ©2000 The American Physical Society
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G51
1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

2 . ~2!

III. UNBIASED DIFFUSION

The unbiased diffusion is defined as follows: a parti
moves on the directed De Bruijn graphG, and at each time
step t, it jumps with equal probability to one of the nex
neighbors of the vertex it stands on at this time. Thus
transition probability matrix isW05G/2. In the long run, the
fraction of time spent on vertexn is given by@(W0)`#0,n . It
can be seen~see Appendix A! that

@~W0!k#m,n5
1

2k (
n50

2k21

d [2km%P] 1n,n . ~3!

In particular, (W0
M1k)m,n51/P for all k>0 that is, all strings

m are visited with the same frequencyrm51/P.
In order to have a intuitive feeling of those graphs, w

write them forM53:

W0
25

1

4 1
1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

2 ,

W0
35W0

45W0
55•••5

1

8 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

2 .

~4!

IV. RANDOMLY BIASED DIFFUSION

The perturbations are introduced by adding a term to
transition probabilities matrixWe5W01eW1 wheree quan-
tifies the asymmetry andW1 contains the disorderj:

~W1!m,n5~21!njm~W0!m,n , ~5!
e

e

where thej are drawn independently from the probabili
distribution function ~PDF! P(j)51/2d(j21)11/2d(j
11) and the (21)n comes from the normalization of th
perturbed probabilities. We are looking for the stationa
transition probabilities, i.e., We

` , such that We
`

5 limk→`(We)
k. It exists sinceWe is a bounded operator. It

formal series expansion ine is denoted by We
`

5(k>0ekWk
` whereW0

` is a matrix all of whose coefficients
are equal to 1/P ~see above!. The relationshipWe

`5We
`We

provides the recurrence

Wk
`5Wk

`W01Wk21
` W1 . ~6!

Since Wk
MW0

`50, we iterate this equationm21 times by
replacingWk

` with Wk
`W01Wk21

` W1 on the right-hand side
~RHS!, yielding

Wk
`5Wk21

` W1V5W0
`@W1V#k, ~7!

whereV5(c50
M21(W0)c. At this point, it is useful to remark

that multiplying a matrix on the left byW0
` is equivalent to

averaging its columns:

~W0
`A!m,n5 (

a50

P21

~W0
`!m,aAa,n5

1

P (
a50

P21

Aa,n

5~average of thenth column of!A; ~8!

thus the matricesWk
` consist of averages of columns o

(W1V)k. Therefore, (Wk
`)m,n is the kth order correction to

the frequency of vertexn, which will be calledr (k)
n in the

following. Note that̂ r (k)
n &j50 for all k>1. The square root

of the second moment ofr (k)
n averaged over the disorde

gives an indication of the typical value ofr (k)
n . In Appendix

B we obtain the approximation

^uur (k)uu2&j;
~121/P!k

P
, ~9!

which is exact for the first order perturbation. Thereforer (k)
n

is of the same order as the unperturbedr (0)
n ; thus it cannot be

neglected. Figure 2 shows that the behavior predicted by
~9! is indeed correct for largeP.

Finally, one can estimate the second moment ofrn. If one
supposes that the perturbations at different orders are i
pendent, one obtains

Dr25
1

P (
n50

P21

@^@rn#2&j2^rn&j
2#

.
1

P2 F 1

12~121/P!e2
21G

.
1

P2

e2

12e2
. ~10!
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V. APPLICATION TO THE MG

Let us first define the game1: The MG consists ofN agents
trying to be at each time step in the minority. Each agent
S strategies or lookup tablesai ,s , s51, . . . ,S, and dynami-
cally assigns a score to each of them. At each time stept, the
system’s historym(t) is made available to all agents; th
latter use their best strategy2 si(t) to make the decision
ai ,si (t)

m (t)511 or 21 and a market maker sums up all de

sions into the aggregate quantityA(t)5( i 51
N ai ,si (t)

m (t).

Macroscopic quantities of interest include the tempo
averages of theA(t) conditional tom(t)5m, for all m, de-
noted by ^Am&. The MG undergoes a second order pha
transition with symmetry breaking as the control parame
a5P/N is varied @10,11#: the system is in the symmetri
phase (̂Am&50 for all m) if a,ac and it is in the asym-
metric phase fora.ac . One convenient order parameter i3

H5^A&2: it is equal to zero in the symmetric phase, a
grows monotonically witha in the asymmetric phase@11#
~see Fig. 4!. One other relevant macroscopic quantity is t
fluctuationss25^A2& which quantifty the performance o
the agents@8,10–12#.

Before doing any analytic calculations, it is worth lookin
at Fig. 3 and 4 which clearly show that Cavagna’s asser
is right as long as the system is in the symmetric pha
Indeed, if^Am&50, the transition probabilities fromm to its
next neighbors are unbiased; that is,em50. Therefore in the
symmetric phase, wherêAm&50 for all m, the frequencies
of visit are uniformrm51/P. Accordingly, numerical simu-
lations show that these quantities collapse on the same cu

As a increases, the critical point is crossed, and^Am&

1See Refs.@11,7,8,12# for more details.
2The one with the highest score.
3R̄5(mrmRm is the notation for the weighted average over t

histories.

FIG. 2. Squared norms ofr (k) for k50, . . . ,4~circles, squares
diamonds, open triangles, and solid triangles! ~average over 500
samples!. They decrease as 1/P for large P. The solid lines are
exact theoretical predictions.
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Þ0 for somem. The dynamics of the history is biased on a
such histories and consequently all macroscopic quant
are significantly different: boths2/N andH/N are lower for
real histories than for uniformly sampled histories. This c
be understood by the facts thats2/N and H are increasing
functions ofa and that the biases on the De Bruijn graph
histories reduce the effective number of histories that can
defined as 22 log2r: in other words, the effectivea of the MG
with real histories is smaller than that of the MG with un
form histories. This explanation is indeed confirmed by F
5; this shows the fraction of frozen agents4 f which is a
decreasing function ofa in the asymmetric phase. As ex
pected from the above argument,f of the MG with real
histories is larger than that of the MG with uniforml
sampled histories.

The biasem on a particular history can be estimated f
largeN: in this limit Am is a Gaussian variable with averag
^Am& and variancê (Am)2&2^Am&2, leading to

em5^sgn~Am!&.e th
m 5erfSA ^Am&2

2@^~Am!2&2^Am&2#
D .

~11!
Figure 6 confirms the validity of Eq.~11!. The figure also

shows thatem are unevenly distributed and they are not eq
even if the system is deep in the asymmetric phase (a.8.5
in this figure!. Indeed, as a function ofm, ^Am& is a random
variable with average 0 and varianceH, which is an increas-
ing function of a. Since we studied the diffusion of per
turbed graphs with only one parametere, we have to map all
em onto a scalar quantity, so that we definee as the non-

4See@11#: they are agents that stop being adaptative.

FIG. 3. Comparison between the fluctuations of the MG w
uniformly sampled~squares! and real~circles! histories. In the sym-
metric phase, these are equal whereas they differ significantly in
asymmetric phase. Dashed and solid lines are corresponding
retical predictions; they overlap in the symmetric phase (M58, S
52, 300P iterations, average over 200 samples!.
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weighted average5 of em over the histories. For largeP, e can
be approximated by

ē th52E
0

`

dA
e2A2/2H

A2pH
erfS A

A2~s22H !
D . ~12!

Here bothH and s2 can be computed analytically with th
method of Refs.@7,12,8# ~see Appendix C!. However, the
solution depends on the distributionrm. In order to make Eq.
~12! a self-consistent equation forē th , we need to param
etrize the distribution ofrm by ē th itself.

We could not findab initio the analytic form of the PDF
of $rm%, but Fig. 7 shows that

P~t!.
~l11!l11

G~l11!
tle2(l11)t ~13!

is a very good approximation for the PDF ofr5t/P. The
parameterl is easily connected withē th :

^t2&2^t&25
1

11l
5P2Dr2.

ē th
2

12 ē th
2

, ~14!

where we used Eq.~10!. This givesl.(122ē th
2 )/ ē th

2 . Note

that this approximation requiresē th,1/A2.
This turns Eq.~12! into an equation forē th , and the

theory is self-consistent. Figure 8 reports the measurede and
its approximationē th . What clearly appears from this figur
is thate is far from being negligible, and thatē th is a quite
good approximation toe.

5This is clearly an important assumption, but the diffusion on
Bruijn graphs with oneem per site leads to a much greater com
plexity. As appears in Figs. 3, 4, and 9, this assumption is
unrealistic.

FIG. 4. Comparison between the available information of
MG with uniformly sampled~squares! and real~circles! histories.
Dashed and solid lines are corresponding theoretical predict
(M58, S52, 300P iterations, average over 200 samples!.
We can also check the validity of Eq.~10! against the
self-consistent theory. Figure 9 shows that Eq.~10! is in
good agreement with numerical simulations as long as
histories are visited. Moreover, the approximationē th for e
leads to qualitatively similar results, but underestimatesDr2

becauseē th,e ~see Fig. 8!.
The self-consistent replica calculation for the minor

game of Refs.@7,12,8# with the ansatzr5t/P andt given
by the PDF~13! is discussed in Appendix C. Figures 3 and
indicate that analytic predictions are well supported by n
merical simulations.

In the asymmetric phase, which is arguably the most
evant and interesting in the MG@8#, all quantities of the MG
change significantly if one replaces real histories with ra
dom uniform histories. A dependence on the frequenciesrm

t

e

ns

FIG. 5. Comparison between the fraction of frozen agents in
MG with uniformly sampled~squares! and real~circles! histories. In
the symmetric phase, these are equal whereas they differ sig
cantly in the asymmetric phase (M58, S52, 300P iterations, av-
erage over 200 samples!.

FIG. 6. e th
m of Eq. ~11! vs real em (M510, N5121, S52,

1000P iterations!.
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1866 PRE 62DAMIEN CHALLET AND MATTEO MARSILI
does not necessarily imply the relevance of the detailed
namics of the histories. If the historiesm where drawn ran-
domly from the ‘‘correct’’ distributionrm, the results would
be the same~actually it suffices to know the pdf ofrm). The
problem is that the distributionrm depends on the asymme
try ^Am&, which in turn depends on the microscopic cons
tution of all agents@11#. In other words,rm is a self-
consistently determined quantity and hence it is only kno
a posteriori.

VI. CONCLUSION

We have shown that the dynamics of histories canno
considered as irrelevant. Indeed, even for the canonical M
it is relevant and cannot be replaced by randomly dra
histories. In addition, for many extensions and variations

FIG. 7. Distribution of the frequency of visit of the histories
the minority game. The solid line is the best fit for a PDF given
Eq. ~13! (M513, N5801, S52, 400P iterations!.

FIG. 8. e versusa5P/N (M58, S52, 300P iterations, aver-

age over 200 samples!. The straight line isē th , the theoretical pre-
diction of the self-consistent theory.
y-

-

n

e
,

n
f

the MG, the dynamics of histories is not only relevant, b
crucial.
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APPENDIX A

Let us prove by induction that

~W0
k!m,n5

1

2k (
n50

2k21

d [2km%P] 1n,n . ~A1!

It is sufficient to calculate explicitly (W0
k)m,n from

(W0
k21)m,n ,

~W0
k!m,n5 (

t50

P21

~W0!m,t~W0
k21!t,n

5 (
n50

2k2121

$d [2k21([2m%P])%P] 1n,n

1d [2k21([2m%P] 11)%P] 1n,n%

5
1

2k (
n50

2k21

d [2km%P] 1n,n , ~A2!

since A(B%P)%P5AB%P and (2km12k21)%P
5@2km%P#12k21 if P52M andk<M21.

FIG. 9. Inhomogeneity of the frequency of historiesDr2 versus
a5P/N from numerical simulations~circles!, Eq. ~10! with e from

numerical simulations~squares!, and Eq.~10! with ē th ~solid line!.
Inset: average number of visited histories versusa (M58, S52,
300P iterations, average over 200 samples!.
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APPENDIX B

In order to simplify the notation, we define

~Xc!m,n5 (
n50

2c21

d [2c11m%P] 1n,n2d [2c11m%P] 1n12c,n .

~B1!

This matrix is such that

~Xc!m,n

5H 1 if 2c11m%P<n,@2c11m%P#12c,

21 if @2c11m%P#12c<n,2c11~m11!%P,

0 otherwise.

~B2!

With this formalism, one can writeW1V as

~W1V!m,n5
jm

2 (
c50

M21
1

2c
~Xc!m,n . ~B3!

Let us calculate the perturbation at order 1: one has to c
pute uur (1)uu2 in order to have an estimation of the typic
value of a genericr (1)

n : since thej are uncorrelated and
(n50

P21(Xc)m,n(Xd)m,n52c11dc,d ,

^uur (1)uu2&j5
1

4P2 (
m,n50

P21

(
c50

M21
@~Xc!m,n#2

22c
5

~121/P!

P
.

~B4!

The next orders of perturbation are much harder to han
However, for largeP, one can approximate them by suppo
ing that

^uur (k)uu2&j;~121/P!^uur (k21)uu2&j5
~121/P!k

P
.

~B5!

Consequently,r (k)
n ;(121/P)k/2(1/P).1/P at leading or-

der.

APPENDIX C

Since agents actually minimizeH/N, one can conside
this quantity as a Hamiltonian and find its ground state. T
is possible by methods of statistical physics such as the
lica trick @13,14#. The generalization of the calculus of Ref
h

int
-

e.
-

is
p-

@7,12,8# to rm5tm/P drawn from the pdf given by Eqs.~13!
and~12! is straightforward; the free energy reads, in the th
modynamic limit,

F~b,Q,q,R,r !5 K a

2b
ln@11xt#L

t

1
11q

2 K 1

1

t
1xL

t

1
ab

2
~RQ2rq !

2
1

b K lnE
21

1

dse2b(zs22Aarzs)L
z

, ~C1!

where x5b(Q2q)/a and z52Aa/rb(R2r ). Next, the
b→` limit is taken while keeping finitex and z. One ob-
tains

H5
11Q

2 F K 1

1

t
1xL

t

2xK 1

F1

t
1xG2L

t

G ~C2!

and

s25H1
12Q

2
, ~C3!

whereQ andx take their saddle point values, given by th
solution of

Q~z!512A2

p

e2z2/2

z
2S 12

1

z2D erfS z

A2
D , ~C4!

Q~z!5
1

a Ferf~z/A2!

xz G2 1

K 1

@1/t1x#2L
t

21, ~C5!

xK 1

1

t
1xL

t

5
erf~z/A2!

a
. ~C6!

Equations~C5! and ~C6!, together with Eq.~12!, form a
closed set of equations that has to be solved numerica
Note that as in the random histories case,x becomes infinite
at the critical point, whereac5erf(z/A2).
nt
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